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Abstract

We examine the possibility of using the standard Newton’s method for solving a class of
nonlinear eigenvalue problems arising from electronic structure calculation. We show that
the Jacobian matrix associated with this nonlinear system has a special structure that can
be exploited to reduce the computational complexity of the Newton’s method. Preliminary
numerical experiments indicate that the Newton’s method can be more efficient for small
problems in which a few smallest eigenpairs are needed.

1 Introduction

We are concerned with solving the following type of nonlinear eigenvalue problem

H(X)X = XΛk, (1)

where X ∈ R
n×k, XT X = Ik, H(X) ∈ R

n×n is a matrix that has a special structure to be
defined below, and Λk ∈ R

k×k is a diagonal matrix consisting of the k smallest eigenvalues
of H(X). This type of problem arises in electronic structure calculations [14, 11]. The
nonlinearity simply refers to the dependency of the matrix H on the eigenvector matrix X
to be computed. This dependency is expressed through a vector ρ(X) that represents the
charge density of electrons in a molecule or solid. This vector is defined as

ρ(X) ≡ diag(XXT ), (2)
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where diag(L) denotes the vector containing the diagonal elements of the matrix L.
Given ρ(X), the matrix H(X) that we will consider in this paper is defined as

H(X) = L + Diag(L†ρ(X)− γρ(X)1/3), (3)

where L is a discretized Laplacian, L† is the inverse or pseudoinverse of L (depending on
the boundary condition imposed on the continuous problem), Diag(x) (with an uppercase
D) denotes a diagonal matrix with x on its diagonal, and γ ≥ 0 is some known constant. In
electronic structure calculations, H(X) is often referred to as a single-particle Hamiltonian.

The nonlinear eigenvalue problem (1) can be derived from the first order necessary
condition of a constrained minimization problem in which a total energy function

E(X) =
1

2
trace(XT LX) +

1

4
ρ(X)T L†ρ(X)−

3

4
γρ(X)T ρ(X)1/3, (4)

is minimized subject to the orthonormality constraint XT X = Ik. Thus solving (1) is
equivalent to solving a constrained minimization problem.

Note that the solution to (4) or (1) is not unique. If X is a solution, then XQ is
also a solution for any Q ∈ R

k×k such that QT Q = Ik. That is, the solution to the
constrained minimization problem or, equivalently, the nonlinear equations defined by (1)
is a k-dimensional invariant subspace in R

n rather than a specific matrix. In particular, Q
can be chosen such that Λk is diagonal. In this case, X consists of k eigenvectors associated
with the k smallest eigenvalues of H(X).

Currently, the most widely used approach for solving this type of problem numerically
is to apply the so called Self Consistent Field (SCF) iteration. In each SCF iteration, one
computes approximations to a few smallest eigenvalues and their corresponding eigenvectors
of a fixed Hamiltonian defined by the current approximation to the wavefunctions X , the
computed eigenvector approximations are used to construct a new Hamiltonian. When
difference between the new and the previous Hamiltonians is negligible, the SCF iteration
is terminated, and the eigenvectors of the Hamiltonian become self-consistent.

In [15], the SCF iteration is viewed as an optimization procedure that seeks the mini-
mizer of the total energy function indirectly by minimizing a sequence of quadratic surro-
gate functions. These surrogates are constructed in such a way that their gradients match
with that of the total energy function at the current approximate wavefunctions.

An alternative algorithm is proposed in [15] to minimize the total energy function
directly. The key ingredients of the direct constrained minimization (DCM) algorithm in-
volve projecting the total energy function into a sequences of low dimensional subspaces
and seeking the minimizer of total energy function within each subspace. The low dimen-
sional subspace is constructed from the current eigenvector approximation, the gradient
of the total energy and the previous search direction. No second derivative information is
employed. Thus the convergence rate of this algorithm is at best superlinear.

Neither the SCF iteration nor the DCM algorithm is a standard optimization algorithm
for solving a constrained minimization problem. A natural question one may ask is whether
the existing optimization techniques can be applied directly to (1), which can be viewed
a system of nonlinear equations, or (4), which is a constrained minimization problem. If
so, how effective are they in comparison to SCF and DCM? In this paper, we explore the
feasibility of applying the Newton’s method to (1) and (4). In particular, we describe the
structure of the Jacobian matrix associated with (1) (or the Hessian associated with (4)).
We discuss how to compute the Newton step efficiently and present some numerical results
that demonstrate the quadratic convergence of the Newton’s method when applied to (1),
and the overall cost of this approach in comparison with SCF.
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2 Newton’s Method

The nonlinear eigenvalue problem (1) can be viewed as a set of nonlinear equations R(X, Λ) =
0, where

R(X, Λ) =

[

F (X, Λ)
G(X)

]

≡

[

H(ρ(X))X −XΛ
XT X − I

]

, (5)

and Λ is a symmetric k× k matrix. Hence we may apply the Newton’s method directly to
obtain the solution of (1), if a good initial guess is available. Note that XT X = I contains
only k(k + 1)/2 non-redundant equations. Therefore, the total number of non-redundant
equations in (5) is nk + k(k + 1)/2, which is identical to the total number of unknowns in
X and Λ. As we mentioned earlier, once the solution to (5) is obtained, it is easy to turn
Λ into a diagonal matrix by finding an unitary matrix Q such that (XQ, QT ΛQ) is also a
solution to (5) and QT ΛQ is diagonal.

Given an initial guess (X(0), Λ(0)) to the solution of (1), the standard Newton’s method
for solving (1) proceeds as follows:

1. At the ℓth iteration, compute the Newton correction Z(ℓ) ≡ (∆X(ℓ), ∆Λ(ℓ)) by solving

J (ℓ)Z(ℓ) = −R(X(ℓ), Λ(ℓ)), (6)

where J (ℓ) is the Jacobian matrix of F with respect to elements of X and Λ evaluated
at (X(ℓ), Λ(ℓ)).

2. Update the solution

[

X(k+1)

Λ(k+1)

]

=

[

X(ℓ)

Λ(ℓ)

]

+ β

[

∆X(ℓ)

∆Λ(ℓ)

]

, (7)

where β is an appropriate step length.

Note that we write the correction equation in the form of (6) merely for convenience.
The matrices R(X(ℓ), Λ(ℓ)) and (∆X(ℓ), ∆Λ(ℓ)) should be treated as vectors with m =
(2n + k + 1)k/2 components, and the dimension of J (ℓ) is m ×m. The structure of this
Jacobian matrix will be examined in the next section.

Note that the solution to (1) is not unique. In particular, not all solutions to (1) min-
imize the total energy function in the original constrained minimization problem. Hence,
one of the drawbacks of applying the Newton’s method to (5) is that it may converge to
a solution to (1) that does not yield the minimum total energy if (X(0), Λ(0)) is chosen
arbitrarily.

Although this problem can be mitigated somewhat by using the Newton’s method to
solve the constrained minimization problem (4) using for example, the augmented La-
grangian method [2] or an interior point method [3], it cannot be completely eliminated
because the constrained minimization problem is nonconvex. Therefore, the optimization
procedure may converge to a local minimum when the starting guess is not sufficiently close
to the solution of (1).

In this paper, we focus on the local convergence of the Newton’s method by assuming
that a good initial guess is available. Such an initial guess can be obtained by running, for
examples, a few iterations of the SCF method or the DCM algorithm described in [15].

Another potential problem with the standard Newton’s method is that it does not
take into account the invariance property of E(X) and H(X). Our numerical examples
to be shown in Section 6 indicates that this does not appear to delay the convergence
of the Newton’s method. Once convergence is reached, the orthonormality constraint is
automatically satisfied. On the other hand, it is possible to develop a Newton’s method that
preserves the orthonormality constraint throughout the Newton iteration. This approach
is taken by Edelman et al. [5] who proposed to minimize the total energy function on the
Grassmann manifold defined by XT X = I. We will refer to this approach as the Grassmann
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Manifold Newton’s (GNM) method. At the ℓth GNM iteration, a search direction Z is
obtained by solving

EXX〈Z〉 − Z(XT EX) = −G, (8)

ZT X(ℓ) = 0, (9)

where EXX denotes the nk × nk second derivative matrix defined element-wise by

(EXX)ij,kl =
∂2E

∂Xij∂Xkl
, (10)

and evaluated at X(ℓ), EXX〈Z〉 denotes an n× k matrix that satisfies

trace(Y T EXX〈Z〉) = vec(Y )T EXXvec(Z), (11)

for any n × k matrix Y, i.e., EXX〈Z〉 simply folds the vector EXXvec(Z) into an n × k
matrix. The first derivative matrix EX that appears in (8) is defined element-wise by

(EX)ij =
∂E

∂Xij
,

and
G = (I −X(ℓ)X(ℓ)T )EX .

To obtain a better approximation along the geodesic (which preserves the orthonor-
mality constraint XT X = I) associated with Z, we seek an optimal “step length” t such
that

X(t) = Y V cos(Σt)V T + U sin(Σt)V T ,

where UΣV T is the compact singular value decomposition of Z, yields the minimum
E(X(t)).

The key to a successful implementation of either the standard Newton’s method or the
GMN method is to solve the correction equations (6) or (8) and (9) efficiently. We will
discuss how that can be accomplished in section 4.

3 The Structure of the Jacobian Matrix

Before we discuss how to solve (6) and (10) efficiently, let us first examine the structure of
the Jacobian matrix J (ℓ) appeared in (5) and the second derivative matrix EXX in (10).
Recall that the dimension of J (ℓ) is m×m, where m = (2n+k+1)k/2. Hence, a brute force
approach for evaluating this matrix and solving (5) will be prohibitively expensive. The
dimension of EXX〈Z〉 is n× k. However, solving the Sylvester equation (8) would amount
to solving a linear system with dimension nk× nk. In this section, we will show that both
J (ℓ) and EXX have special structures that can be exploited to speed up the computation.

3.1 The Jacobian matrix of R(X, Λ)

The Jacobian matrix J of R(X, Λ) consists of the partial derivatives of each entry in R(X, Λ)
with respect to elements of X and Λ. We partition J as

J =

[

J11 J12

J21 J22

]

, (12)

where J11 denotes the partial derivative of F with respect to X , J12 the partial derivative
of F with respect to Λ, J21 the partial derivative of G with respect to X . The J22 block,
which is the partial derivative of G with respect to Λ, is clearly zero.
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We will now examine the structure of J11, J12 and J21. Note that the precise struc-
tures of these matrices depend on how elements of X and Λ are organized into a vector
respectively.

In the following, we will rearrange the elements of X and by stacking columns of X
into a single vector denoted by vec(X), i.e.,

vec(X) = (xT
1 xT

2 . . . xT
k )T .

The same column-major ordering scheme is used for both H(X)X and Λ.

3.1.1 The structure of J11

The function vec(F (X, Λ)X) = vec(LX +Diag(L†ρ)X −XΛ) is the sum of three terms. It
is easy to verify that the derivative of the first term, vec(LX), can be expressed succinctly
by

Ik ⊗ L, (13)

where Ik is a k× k identity matrix, and Ik⊗L denotes the Kronecker product of Ik and L.
Similarly, the partial derivative of the third term, vec(XΛ), with respect to vec(X) can

be easily shown to be
Λ⊗ In. (14)

Because the second term of vec(F ) is nonlinear in X , its derivative has a more complex
expression. Let us first examine the case in which X contains a single column, i.e., X =
(x1). In this case, the partial derivative of Diag(L†ρ)x1 with respect to x1 can be derived in
a straightforward manner. Using the product rule and the observation that Diag(L†ρ)x1 =
Diag(x1)L

†ρ, we obtain

∂Diag(L†ρ)x1

∂x1
= Diag(L†ρ) + Diag(x1)

∂(L†ρ)

∂x1

= Diag(L†ρ) + Diag(x1)
∂(L†ρ)

∂ρ

∂ρ

∂x1

= Diag(L†ρ) + 2Diag(x1)L
†Diag(x1)

= Diag(L†ρ) + 2L† ⊙ (x1x
T
1 ),

where ⊙ is used to denote a Hadamard product.
The technique used above can be extended to the case in which X contains k columns.

Let e = (1, 1, ..., 1)T be a vector with k ones, and define Diag(X) ≡ (Diag(x1) Diag(x2) · · ·Diag(xk)).
It is not difficult to verify that

∂vec(Diag(L†ρ)X)

∂vec(X)
= Ik ⊗Diag(L†ρ) + Diag(vec(X))

∂(e⊗ (L†ρ))

∂vec(X)

= Ik ⊗Diag(L†ρ) + Diag(vec(X))
∂(e⊗ L†ρ)

∂ρ

∂ρ

∂vec(X)

= Ik ⊗Diag(L†ρ) + 2Diag(vec(X))(e⊗ L†)Diag(X)

= Ik ⊗Diag(L†ρ) + 2[(eeT )⊗ L†]⊙ (vec(X)vec(X)T ). (15)

Similarly, we can show that

∂vec(Diag(ρ1/3)X)

∂vec(X)
=

2

3
[(eeT )⊗Diag(ρ1/3)]⊙ (vec(X)vec(X)T ). (16)

It follows from (13), (14), (15) and (16) that

J11 = Ik ⊗ [L + Diag(L†ρ− γρ1/3)]

+ 2[(eeT )⊗ (L† −
γ

3
Diag(ρ−2/3))] ⊙ (vec(X)vec(X)T )− Λ⊗ In. (17)
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Note that the Hessian of the total energy function EXX has a similar structure to that
of J11 with the exception that it does not contain the term involving Λ, i.e.,

EXX = Ik ⊗ [L + Diag(L†ρ)] + 2[(eeT )⊗ (L† −
γ

3
Diag(ρ−2/3))]⊙ (vec(X)vec(X)T ). (18)

3.2 The Structure of J21 and J12

Because the only term in F (X, Λ) that contains Λ is XΛ, its partial derivative with respect
to Λ contains elements that are linear in X . Let us first ignore the symmetry of Λ. It is
then easy to verify that

J12 =
∂vec(XΛ)

∂vec(Λ)
= Ik ⊗X,

which is a block diagonal matrix with X on each diagonal block. To take the symmetry of
Λ into account, we can simply remove the leading j − 1 columns corresponding to the jth
diagonal block of Ik ⊗X for j = 2, ..., k.

Similarly, it is not difficult to verify that

J21 =
∂vec(XT X)

∂vec(X)
= Ik ⊗XT + XT ⊗ Ik

The redundancy introduced by the symmetry of XT X can be eliminated by removing the
leading j − 1 rows corresponding to the jth diagonal block of J12 for j = 2, ..., k.

4 Search Direction Computation

The structure analysis of the Jacobian matrix of R(X, Λ) can be used to develop an efficient
scheme for computing the search direction in either the standard Newton’s method applied
to (1) or the GMN method used to minimize (4). We will first discuss how to compute the
search direction Z in the standard Newton’s method when it is applied to (1). A similar
strategy can be used in the GMN method.

Because the dimension of J is generally very large, it is necessary to solve (6) by an
iterative method. In this paper, we are not concerned with the choice of a particular
iterative method. Instead, we focus on the efficiency of the matrix vector multiplication
required in all iterative methods. Another issue that we will discuss briefly is the stopping
criterion one should use to terminate the iterative method for search direction computation.

4.1 Jacobian vector multiplication

When a Krylov subspace method is used to find an approximate solution to (6), we must
develop an efficient procedure to carry out the matrix vector multiplication vec(W ) ←
Jvec(V ), where W and V are both (n + 1)k by k, with as few floating point operations as
possible. If we partition W and V conformally with J , i.e., if we let

W =

(

WX

WΛ

)

, V =

(

VX

VΛ

)

,

then it is easy to see that

(

vec(WX)
vec(WZ)

)

=

(

J11vec(VX) + J12vec(VZ )
J21vec(VX)

)

.

Because J12 and J21 are both very sparse the products J12vec(VZ) and J21vec(VX) can be
computed efficiently.
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The expression for J11 shown in (17) indicates that this nk × nk matrix is completely
dense due to the presence of the term

2[(eeT )⊗ (L† −
γ

3
Diag(ρ−2/3)]⊙ (vec(X)vec(X)T ). (19)

Hence, one may be concerned about the feasibility of computing the product J11vec(VX)
at a low cost. However, the following lemma suggests that such concern is unnecessary
because (19) turns out to have a low rank structure that allows J11vec(VX) to be evaluated
at a complexity proportional to that of evaluating k matrix vector multiplications L†yj ,
for some yj ∈ R

n, j = 1, 2, ..., k.

Lemma 1 Let S ∈ R
n×n, X ∈ R

n×k, and e ∈ R
k be a vector of all ones. Then the

following identity holds
[(

(eeT )⊗S

)

⊙

(

vec(X)vec(X)T

)]

vec(Y ) =

[(

(eeT )⊗S

)(

vec(X)⊙vec(Y )

)]

⊙vec(X).

(20)

The identity can be easily derived from a straightforward extension of the simpler identity
[

S ⊙ (xyT )

]

z =

[

S(y ⊙ z)

]

⊙ x, (21)

where x, y, z ∈ R
n.

Lemma 1 suggests that there is no need to form the matrix

S =

(

(ekeT
k )⊗ (L† −

γ

3
Diag(ρ−2/3)

)

⊙

(

vec(X)vec(X)T

)

(22)

explicitly in order to carry out the matrix vector multiplication J11vec(VX). When S is
defined as in (22). The right hand side of (20) can be alternatively expressed as

vec[Diag(w)X ],

where

w =

[

L† −
γ

3
Diag(ρ−2/3)

] k
∑

i=1

(xi ⊙ yi) =

[

L† −
γ

3
diag(ρ−2/3)

]

Diag(XY T ).

Therefore, instead of performing O(n2k2) floating operations, as the left hand side of (20)
would indicate, we only need to perform k + 1 matrix vector multiplications of the form
L†z, k matrix vector multiplications of the form Lz, as well as O(k) additional point-
wise vector multiplication of the form w ⊙ xi to complete the computation of J11vec(X).
Furthermore, because L† is the inverse or pseudoinverse of the discretized Laplacian L,
L†zi can be carried out using a multigrid solver or a fast convolution algorithm which has
a computational complexity of O(n log(n)). Hence, the computational cost associated with
J11vec(X) is at most O(n log(n)k). This is comparable to the cost associated with the
Hamiltonian matrix-vector multiplications (H(X)Y ) used in each iteration of an iterative
eigensolver typically employed in the SCF iteration.

The algebraic simplification provided by Lemma 1 can be employed to improve the
efficiency of the matrix vector multiplication

Y ← (I −XXT )[EXX〈Z〉 − Z(XT EX)]

required in an iteration method for solving the Hessian system (8) and (9). The solution
to these equations yields a search direction for the GMN method. The most difficult
and expensive part of this multiplication is EXX〈Z〉, which involves the calculation of
EXXvec(Z) as indicated in (11). Because EXX , which can be expressed by (18), is identical
to J11 without the −Λ ⊗ In term, the identity (20) can be used to simplify the EXX〈Z〉
calcuation also.
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4.2 Choosing the forcing term

One of the practical issues one must address when using an iterative method to solve the
Newton correction equation is the choice of a stopping criterion. A commonly used criterion
is to terminate the solver when

‖J (ℓ)Z(ℓ) + R(X(ℓ), Λ(ℓ))‖F < ηℓ‖R(X(ℓ), Λ(ℓ))‖F ,

for some appropriately chosen ηℓ. The parameter ηℓ is often referred to as the forcing term.
When (X(ℓ), Λ(ℓ)) is far from the solution of (1), solving the Newton correction equation to
high accuracy by setting ηℓ to a small value is usually not necessary. To reduce the total
computational cost, one may use an adaptive scheme proposed by Eisenstat and Walker in
[6] to gradually reduce ηℓ as (X(ℓ), Λ(ℓ)) moves closer to the solution of (1). In particular,
one may choose ηℓ as

ηℓ = σ
‖R(X(ℓ), Λ(ℓ))‖2

‖R(X(ℓ−1), Λ(ℓ−1))‖2
,

where σ ∈ (0, 1]. Safeguards must be placed on ηℓ to prevent it from becoming either too
close to 1 or too small in the early iterations of the Newton’s method. We will refer readers
to [6] for details.

5 Line Search

When the initial guess for the Newton’s method is not sufficiently close to the solution of
(1), taking a full Newton step, i.e., setting β = 1 in (7) may lead to a significant increase
in the residual norm ‖R(X, Λ)‖F and/or total energy E(X). To overcome this problem
and achieve global convergence, we may, at each Newton iteration, perform a line search
procedure that judiciously chooses an appropriate step size β. A number of line search
techniques [8, 7, 12] can be used here. These techniques require β to satisfy either the
Armijo rule [1]

M(X(ℓ) + β∆X(ℓ), Λ(ℓ) + β∆Λ(ℓ))−M(X, Λ(ℓ)) < σ1β∇M(X(ℓ), Λ(ℓ))T Z(ℓ) (23)

for some small σ1 ∈ (0, 1) or the Wolfe conditions that include both (23) and the condition
that

∇M(X(ℓ)β∆X(ℓ), Λ(ℓ) + βΛ(ℓ))T Z ≥ σ2∇M(X(ℓ), Λ(ℓ))T Z(ℓ),

where M(X, Λ) is an appropriate merit function, and Z(ℓ) is used above to represent the
vectorized correction (∆X(ℓ), ∆Λ(ℓ)). When the Newton’s method is applied to (1) directly,
‖R(X, Λ)‖2 can be used as the merit function M(X, Λ). When an augmented Lagrangian
method or an interior point method is used to solve (4) as a constrained minimization, a
different merit function should be used [2, 12, 3]. In our numerical experiments, we have
also tried the line search technique proposed in [10]. The main feature of this technique
is that it may accept a step length even when the merit function temporarily increases.
It seems to be more robust than other line search algorithms in terms of achieving global
convergence in our experience.

Global convergence of the Newton’s method can also be enhanced by using the trust
region technique [4]. However, since our main interest in this paper is not the global
convergence of the Newton’s method, we will not discuss this technique further but simply
refer readers to standard literature on this subject [4].

6 Numerical Examples

In this section, we demonstrate the convergence of the Newton’s method with a few nu-
merical examples. In these examples, we choose L as the second-order finite difference
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approximation to the 3-D Laplacian obtained from the standard 5-point central difference
stencil. The Laplacian operator is defined on the domain [0, 32] × [0, 32] × [0, 32] with a
zero Dirichlet boundary condition. We use the mesh size h = 1 for discretization. As a
result, the dimension of the discretized problem is n = 323 = 32768. We set the constant
γ in (3) to 1.0, which is an arbitrary choice. Our experiments indicate that other choices
of γ yield similar convergence behavior. We use MINRES [13] as the iterative solver of the
correction equation (6). Convergence of the Newton’s method is declared when

‖R(X(ℓ), Λ(ℓ))‖ < 10−10,

where the residual R(X, Λ) is defined in (5). All experiments are performed using MAT-
LAB.

6.1 Local Quadratic Convergence

In Figure 1, we plot the change of the residual norm ‖R(X(ℓ), X(ℓ))‖ against the iteration
number ℓ. In this experiment, we set k = 4, i.e., we compute the 4 smallest eigenvalues
of the Hamiltonian (3). The initial guess for the Newton iteration, X(0), is obtained from
running two SCF iterations. A random starting guess is used in the SCF iteration. We set
the maximum MINRES iterations allowed in each Newton iteration to 100. The MINRES
convergence tolerance is set to ηℓ = 10−12, i.e. the MINRES iteration is terminated when
either

‖J (ℓ)Z(ℓ) + R(X(ℓ), Λ(ℓ))‖ < 10−12‖R(X(ℓ), Λ(ℓ))‖, (24)

or when the maximum MINRES iterations allowed is reached. In our experiment, the
tight convergence tolerance set in (24) was never satisfied. The best relative residual norm
returned from MINRES is around 2 × 10−7. Nonetheless, the quadratic convergence of
the Newton’s method is quite clear from the rapid decrease of the residual norm shown in
Figure 1.

1 1.5 2 2.5 3 3.5 4
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

iteration number i

||R
(X

(i)
,Λ

(i)
)|

|

Figure 1: Quadratic convergence of the Newton’s method for n = 323, k = 4.

A similar local convergence behavior is observed when we apply the GNM method to
minimize the total energy (4) directly. However, we found that the GNM method is not
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as robust as the standard Newton’s method applied to (1) in the sense that line search
strategies based on the Armijo and Wolfe conditions as wells as the one proposed in [10]
often fail when X is close to the minimizer of (4).

6.2 Global convergence

Although the Newton’s method is not guaranteed to converge when the initial guess is
far away from the exact solution of (1), our experiments indicate that in many cases,
convergence can be observed even when an random initial guess is chosen. In Figure 2, we
plot the convergence history of the Newton’s method that uses an random initial guess. To
save time in our experiment, the problem we used to test the global convergence is smaller.
In this experiment, we discretized the Laplacian on a 16×16×16 grid. Four eigenpairs are
computed. We set the maximum MINRES iterations allowed in each Newton iteration to
100 also. The MINRES convergence tolerance is set according to the Eisenstat & Walker
forcing term selection rule discussed in section 4.2. Because we use the nonmonotone line
search technique proposed in [10], the changes of residual norm in the early iterations
are not monotonic. However, when (X(ℓ), Λ(ℓ)) is sufficiently close to the solution of (1),
quadratic convergence of (X(ℓ), Λ(ℓ)) can be observed from Figure 2 also.
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Figure 2: Global convergence of the Newton’s method for n = 163, k = 4.

6.3 Constrained minimization

As we mentioned earlier, instead of solving (1) as a system of nonlinear equations, we can
also try to solve the same problem as a constrained minimization problem with (4) being
the objective function and XT X = I as the constraint. This can be done in a number of
ways. For example, we can use the interior point algorithm proposed in [3]. A variant of
the algorithm has been implemented in MATLAB Optimization Toolbox [9]. To use this
particular implementation, we simply call the MATLAB fmincon function as follows

[X,RESNRM] = fmincon(@fetot, X0, [], [], [], [], [], [], @xnrm, ...

options, L, k, gamma);
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where fetot.m is a MATLAB function that we wrote to evaluate the total energy defined
in (4) and its gradient, xnrm.m is a function that we wrote to compute XT X−I, and L, k,

gamma are matrices and scalar parameters required for function and gradient calculations.
The parameter options is a MATLAB structure that allows us to pass other parameters
used by the fmincon function. In particular, it allows us to pass a function HessX that
computes the product of the Hessian and an arbitrary vector. We define this structure as

options = optimset(’Algorithm’ , ’interior-point’,...

’Display’ , ’iter’,...

’MaxIter’ , 5000 ,...

’MaxSQPIter’ , 100 ,...

’MaxFunEvals’, maxfun ,...

’LargeScale’ , ’on’ ,...

’GradObj’ , ’on’ ,...

’GradConstr’ , ’on’ ,...

’Hessian’ , ’on’ ,...

’SubproblemAlgorithm’,’cg’,...

’HessMult’ , @HessX,...

’TolX’ , 1.e-10 ,...

’TolCon’ , 1.e-10 ,...

’TolFun’ , 1.e-10);

Figure 3 shows the convergence history of this particular version of the interior point
algorithm which does not solve the barrier subproblem accurately at each step. It uses
a combination of the sequential quadratic programming (SQP) procedure and the trust
region technique to obtain approximate solutions to the barrier subproblems. The quadratic
minimization problem in each SQP is solved iteratively using a preconditioned conjugate
gradient method [3]. This approach seems to be quite robust. In our experiments, it
converges for all the random initial guesses we tried. However, the convergence rate appears
to be linear even when the approximation is close to the solution, as we can see from the
residual norm plot shown in Figure 3. Our timing measurements also indicate that this
particular approach is more expensive in terms of CPU time compared to applying Newton’s
method to (1) directly.

6.4 Comparison with SCF

Instead of solving a sequence of linear eigenvalue problems as is done in SCF, applying
Newton’s method directly to (1) only requires solving a sequence of linear systems. The
dimension of these linear equations is m = nk + (k + 1)k/2, which is much larger than n,
the dimension of the eigenvalue problem solved in SCF. However, as we indicated earlier,
when an iterative solver such as MINRES is used to solve these systems, the matrix vector
multiplication (MATVEC) can be performed at a complexity that is much less than m2 due
to the special structure of the Jacobian matrix. The most expensive part of the MATVEC
is the computation required to perform L†X , where X is n×k. Because L is block circulant
in many cases (e.g., for periodic problems), L†X can be computed efficiently by using the
fast Fourier transform. The complexity associated with this computation is O(nk log(n)).
In contrast, the SCF iteration only requires to perform one L†ρ per iteration, where ρ
is a vector of length n. However, the iterative procedure used to compute the smallest
eigenvalues of the Hamiltonian H(X(ℓ)) defined by (3) requires repeated computation of
H(X(ℓ))Y , where Y is a n × k. The complexity of this computation is also O(nk log(n))
when planewave discretization is used. So if the number of iterations used to solve each
eigenvalue problem in the SCF iteration is comparable to the number of MINRES iterations
used to solve the Newton correction equation, the Newton’s method can be more efficient
than the SCF iteration.
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Figure 3: The interior-point algorithm implemented in the MATLAB fmincon function con-
verges linearly when applied to a test problem with n = 163, k = 4.

A timing comparison between the Newton’s method and the SCF iteration is reported
in Table 1 for the test problems we considered in this section. We vary both the problem
size n and the number of desired eigenvalues k in our comparison. Each entry in Table 1
corresponds to the ratio TNewton(n, k)/TSCF (n, k), where TNewton(n, k) is the total CPU
time required by the Newton’s method to compute k eigenpairs of a test problem of di-
mension n, and TSCF (n, k) is the CPU time required to solve the same problem by the
SCF iteration. The initial guess used in each Newton test is obtained from running two
SCF iterations (starting from a random initial guess.) Table 1 shows that the Newton’s

(n, k) 1 4 10

103 0.77 0.83 1.25

163 0.98 1.08 2.35

323 2.14 1.81 3.0

Table 1: Timing comparison between the Newton’s method and the SCF iteration.

method can outperform the SCF iteration when n and k are relatively small, and when a
good initial guess is available. For large n and k, the Newton’s method is currently not as
competitive as the SCF iteration. This is primarily due to the large number of MINRES
iterations required to solve the Newton correction equation.

7 Conclusion

We investigated the possibility of applying the standard Newton’s method to a class of
nonlinear eigenvalue problems arising from electronic structure calculations. When viewed
as a system of nonlinear equations, this type of problem has a very large and dense Jacobian
matrix. However, the Jacobian matrix has certain low rank structure that allows us to
solve the Newton correction equation efficiently using an iterative solver. We described the

12



structure of the Jacobian matrix and illustrated how the product of the Jacobian matrix
and a vector can be performed efficiently. A number of numerical examples were presented
to demonstrate the local quadratic convergence of the Newton’s method when applied to
this type of problem. We also showed that global convergence can be achieved when proper
line search procedure and a judicious choice of forcing terms are used in the iterative solver.
We compared the performance the Newton’s method and the SCF iterations. For small
problems in which a few eigenpairs are required, the Newton’s method can outperform the
SCF iteration when a good starting guess is available. For large problems, it is currently
not as competitive. We believe one way to further improve the efficiency of the Newton’s
method is to identify a good preconditioner for the iterative solver used to solve the Newton
correction equation. This is a future research direction that we plan to pursue.
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